Optimized pathogen environmental monitoring program in food processing facilities through reinforcement learning and privatized federated learning algorithms

The key challenges in pathogen environmental monitoring programs stem from the high cost in testing and experimentation, the high risk in contamination and outbreak, and the reluctance of individual facilities to share data due to privacy and liability concerns. This project uses Listeria monocytogenes contamination in food processing facilities as a model to develop new digital-twin models augmented with privacy-guaranteed machine learning solutions for food safety assessment. This proposed integrative framework will provide optimized allocation of testing resources, risk-averse prediction of effective corrective measures, and privacy guarantees to incentivize data sharing among stakeholders and be used as a model for future food safety systems.

Leave a Reply

Your email address will not be published. Required fields are marked *

Become a Fellow

Join the Cornell Institute for Digital Agriculture and become a participating member in advancing research, thought, policy and practice to advance the field of digital agriculture and help build stronger, more resilient agri-food systems.

Stay up to Date

Receive our newsletter for announcements of events, opportunities, digital ag news, Cornell news, and more.

CIDA - Cornell Institute for Digital Agriculture

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact [email protected] for assistance.

FOLLOW US


CIDA Copyright 2023 | CIDA is an equal opportunity employer | Terms of Use | Privacy Policy