MSE Seminar Series: Lauren Zarzar (Penn State)

Dynamic materials that sense and adapt to their surroundings are primed to be integral components of future technologies. Such systems often require precise chemo-mechanical coordination between multiple materials working cooperatively in order to achieve the proper functionality. Therefore, in addition to the exploration of novel mechanisms coupling these chemical and mechanical cues, it will also be critical to develop prototyping approaches that facilitate the integration of a myriad of materials, especially at nano and micrometer length scales. In the Zarzar Lab, we explore a multitude of platforms including both hard and soft materials. For example, we study: direct laser writing of polymers, metals, and oxides for 2D and 3D nano/microscale patterning; dynamically reconfigurable soft materials, such as emulsions and polymers, with functions such as tunable lenses, sensors, and triggered release.

Become a Fellow

Join the Cornell Institute for Digital Agriculture and become a participating member in advancing research, thought, policy and practice to advance the field of digital agriculture and help build stronger, more resilient agri-food systems.

Stay up to Date

Receive our newsletter for announcements of events, opportunities, digital ag news, Cornell news, and more.

CIDA - Cornell Institute for Digital Agriculture

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact [email protected] for assistance.


CIDA Copyright 2023 | CIDA is an equal opportunity employer | Terms of Use | Privacy Policy