Illuminating Belowground Environments by Harnessing Plant Metabolites for Programmable Plant Phenotyping
In spite of its potentially massive agricultural and economic impact, state-of-the-art methods remain unable to reliably predict plant performance in real-world field conditions. Much of what is known regarding plant performance in controlled laboratory conditions fails to hold true in real-world environments. To facilitate the translation of “lab knowledge” into functional predictions in the field, we will develop an underground biosynthetic sensor that enables the molecular dynamics of belowground processes to be illuminated aboveground. Biosensors will be used to transmit belowground detection of environmentally-responsive flavonoids into the arial half of the plant where these signals can be detected using automated phenotyping. This project will ultimately produce a new transformative technology for interrogating root-environment interactions. This tool can be engineered to detect almost any below-ground interaction that triggers the production of a specific metabolite (e.g. pathogens, beneficial microbes, and toxic compounds), and thus can be widely adapted to address a range of agricultural challenges.