Accelerated and automated stress diagnostics in apple orchards
Apple orchards suffer from large numbers of diseases that can incur serious damage to trees, fruits, and the industry. Effective disease control methods rely on accurate, early diagnostics to implement successful and environmentally-sound management. As disease symptoms vary widely due to age of infected tissues, genetic variations, and light conditions within trees, it is challenging for computer vision models to accurately distinguish between the symptoms of different diseases. Our team of plant pathologists, phenotyping experts and computer vision scientists will develop computer vision models to accurately distinguish between the symptoms of many diseases that can incur serious damage to fruits and fruit trees. We will develop user-friendly apps to enable extension educators and consultants to support growers, and empower them to independently scout their orchards and provide accurate early diagnostics as the basis for successful and environmentally-sound disease management. Based on this work, we aim to lead a global challenge competition in the Fine Grained Visual Classification (FGVC) workshop at the Computer Vision and Pattern Recognition 2020 conference to find novel solutions to major challenges in computer vision.