Improving Vineyard Management Using Touch Plant Vein Detection through Machine Learning and Computer Vision

Advances in computer science have led to programs capable of identifying plant parts (e.g. flowers and fruit). This project will utilize these advances to tackle the challenge of using computer vision and machine learning to identify leaf venation in plants. In addition to moving water and sugars through the plant, veins transport macromolecules (RNAs and proteins). My thesis is to visualize this movement; this project will focus on imaging this process. Aim 1) To analyze the shape of venation in the leaf, a water-mobile dye will be added to the roots, taken up by the xylem and carried into the leaves. In a healthy plant, this happens very quickly. The resulting leaves are then imaged under a fluorescent microscope. Analyzing the results are difficult due to a high amount of noise in the images. Traditional segmentation fails to quantify the amount of fluorescence in the leaves. Aim 2) To solve this problem, we will create an automated imaging pipeline for detection of fluorescence in leaves. I will develop a computer vision approach with Professor Bharath Hariharan (CS). This will require the generation of a training set (produced in aim 1) that teaches the computer how to “see” veins. After training, the program performance will be tested against human annotated images. A successfully trained program will be able to automatically detect the presence of fluorescence within dynamic plant veins.

Leave a Reply

Your email address will not be published. Required fields are marked *

Become a Fellow

Join the Cornell Institute for Digital Agriculture and become a participating member in advancing research, thought, policy and practice to advance the field of digital agriculture and help build stronger, more resilient agri-food systems.

Stay up to Date

Receive our newsletter for announcements of events, opportunities, digital ag news, Cornell news, and more.

CIDA - Cornell Institute for Digital Agriculture

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact [email protected] for assistance.

FOLLOW US


CIDA Copyright 2023 | CIDA is an equal opportunity employer | Terms of Use | Privacy Policy