Carbon farming: Combining machine intelligence, big data and process models to support this emerging sector

Restoration of soil organic carbon plays a critical role in addressing climate change while improving agricultural efficiency and reversing land degradation. However, scaling up of soil carbon sequestration is impeded by the high cost of monitoring, and by high levels of uncertainty in soil carbon predictions. Current soil organic carbon maps are based only on spatial interpolation of geographic, environmental, and climatic co-variates. As such, they do not distinguish the impacts of land management, including factors such as tillage regimes, crop rotations, crop and varietal selection, residue management, manure management, irrigation, cover crops, soil and water conservation etc. To provide an improved soil carbon maps that include these factors, we will train and validate machine learning and deep learning models using detailed spatial data on soils, vegetation, climate, and cropping practices. This project aims to create a step change in the accuracy of prediction of soil organic carbon by combining Cornell’s state-of-the-art soil mechanistic modeling with machine learning, deep learning, and spatially-explicit big data to create a “grey-box digital twin”. This will provide a platform to drive evidence-based policy and support massive scaling up of optimized investment in soil health and climate-change mitigation.

Leave a Reply

Your email address will not be published. Required fields are marked *

Become a Fellow

Join the Cornell Institute for Digital Agriculture and become a participating member in advancing research, thought, policy and practice to advance the field of digital agriculture and help build stronger, more resilient agri-food systems.

Stay up to Date

Receive our newsletter for announcements of events, opportunities, digital ag news, Cornell news, and more.

CIDA - Cornell Institute for Digital Agriculture

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact [email protected] for assistance.

FOLLOW US


CIDA Copyright 2023 | CIDA is an equal opportunity employer | Terms of Use | Privacy Policy